Journal of Organometallic Chemistry, 406 (1991) 237–260 Elsevier Sequoia S.A., Lausanne JOM 21349

Vinyliden-Übergangsmetallkomplexe

XIV *. Ketenimin-Rhodiumkomplexe durch [2 + 1]-Cycloaddition aus Vinyliden-Metall-Vorstufen. Die Kristall- und Molekülstruktur von C_sH_sRh[η^2 -N,C-TosN=C=CHPh](PⁱPr₃) **

H. Werner *, U. Brekau und M. Dziallas

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, W-8700 Würzburg (Deutschland) (Eingegangen den 5. September 1990)

Abstract

Ketenimine rhodium complexes $C_5H_5Rh[\eta^2-N,C-R'N=C=CHR](P^iPr_3)$ (8-13) are prepared by [2+1]-cycloaddition from vinylidene-rhodium compounds $C_5H_5Rh(=C=CHR)(P^iPr_3)$ (1, 4-7) and tosylazide or ortho-nitrophenylazide, respectively. The crystal and molecular structure of 8 (R' = Tos, R = Ph) has been determined. The ketenimine ligand is coordinated via the N=C bond, and is bent to give a N-C-C angle of 135.7(2)°. In benzene solution, compounds 8 and 13 slowly rearrange to give the C,C-bound isomers 14 and 15. The reaction of 8-11 with HBF₄ in ether leads to the formation of the BF₄ salts of the cationic complexes $[C_5H_5(P^iPr_3)RhC(CH_2R)N(Tos)]^+$ (16-19) which are obtained as a mixture of cis/trans isomers. In contrast, protonation of 12 in presence of NH₄PF₆ gives $[C_5H_5(P^iPr_3)]RhC(=CHCO_2Me)NH(Tos)]PF_6$ (20). Reaction of 16-18 with NaI in acetone leads to cleavage of the Rh-N bond and formation of the acylimino rhodium compounds $C_5H_5Rh[C(CH_2R)=N(Tos)](P^iPr_3)]$ (21-23). The corresponding chloro derivatives $C_5H_5Rh[C(CH_2R)=N(Tos)](P^iPr_3)Cl (25, 26)$ are obtained from the ketenimine complexes 8, 10 and HCl. On warming to 60°C in chloroform solution, compounds 21-23 and 26 react by elimination of the nitrile RCH₂CN to give the sulfinato rhodium complexes $C_5H_5Rh(O_2SC_6H_4-p-CH_3)(P^iPr_3)X (27, 28)$ which are isolated in ca. 85% yield.

Zusammenfassung

Ketenimin-Rhodiumkomplexe $C_5H_5Rh[\eta^2-N,C-R'N=C=CHR](P^iPr_3)$ (8–13) werden durch [2+1]-Cycloaddition ausgehend von den Vinyliden-Rhodiumverbindungen $C_5H_5Rh(=C=CHR)(P^iPr_3)$ (1, 4–7) und Tosylazid oder ortho-Nitrophenylazid synthetisiert. Die Kristall- und Molekülstruktur von 8 (R' = Tos, R = Ph) wurde bestimmt. Der Ketenimin-Ligand ist über die N=C-Bindung koordiniert, was zu einer Abwinkelung mit einem N-C-C-Winkel von 135.7(2)° führt. Die Verbindungen 8 und 13 lagern in Benzol-Lösung langsam in die C,C-gebundenen Isomere 14 und 15 um. Die Reaktion von 8–11 mit HBF₄ in Ether ergibt die BF₄-Salze der kationischen Komplexe $[C_5H_3(P^iPr_3)RhC(CH_2R)N(Tos)]^+$

^{*} Für XIII. Mitteilung siehe Ref. 1.

^{**} Frau Professor Marianne Baudler zum 70. Geburtstag am 27. April 1991 gewidmet.

(16-19), die als Gemisch von cis/trans-Isomeren erhalten werden. Im Gegensatz dazu führt die Protonierung von 12 in Gegenwart von NH₄PF₆ zu [C₅H₅(PⁱPr₃)RhC(=CHCO₂Me)NH(Tos)]PF₆ (20). Die Umsetzung von 16-18 mit NaI in Aceton führt zur Spaltung der Rh-N-Bindung und zur Bildung der Acylimino-Rhodiumverbindungen C₅H₅Rh[C(CH₂R)=N(Tos)](PⁱPr₃)I (21-23). Die entsprechenden Chloro-Derivate C₅H₅Rh[C(CH₂R)=N(Tos)](PⁱPr₃)Cl (25, 26) werden durch Einwirkung von HCl auf die Ketenimin-Komplexe 8 und 10 hergestellt. Beim Erwärmen auf 60°C in Chloroform-Lösung reagieren die Verbindungen 21-23 und 26 unter Eliminierung des Nitrils RCH₂CN zu den Sulfinato-Rhodiumkomplexen C₅H₅Rh(O₂SC₆H₄-p-CH₃)(PⁱPr₃)X (27, 28), die in ca. 85% Ausbeute isoliert werden.

Einleitung

Ketenimin-Metallkomplexe haben sich in jüngster Zeit als wertvolle und vielseitig verwendbare Bausteine zur Synthese carbocyclischer und *N*-heterocyclischer Vier-, Fünf- und Sechsringe erwiesen [2]. Sie sind in den meisten Fällen nicht durch Komplexierung freier Ketenimine erhältlich, können aber-wie Aumann an zahlreichen Beispielen zeigen konnte [2,3]-aus Fischer-Carben-Komplexen und Isocyaniden oder-wie wir fanden [4]-in umgekehrter Weise aus Isocyanid-Komplexen und Carbenquellen wie z.B. Diazoalkanen aufgebaut werden. Die Koordination des Ketenimins kann dabei über das freie Elektronenpaar am Stickstoffatom oder aber über die C=N- bzw. C=C- π -Bindung erfolgen.

Eine weitere Möglichkeit der Erzeugung eines Ketenimins an einem Metallzentrum besteht in der Addition eines Nitrens an die M=C-Bindung eines Vinyliden-Komplexes. Wir hatten kürzlich gezeigt [5], dass bei der Umsetzung von $C_5H_5Rh(=C=CHPh)(P^iPr_3)$ (1) mit Benzoylazid durch [2 + 3]-Cycloaddition der Metalla-Heterocyclus 2, mit Phenylazid dagegen der Ketenimin-Komplex 3 entsteht. Letzterer ist zunächst in Form des Z-Isomeren erhältlich, das in Lösung jedoch relativ rasch eine Umlagerung zu dem *E*-Isomeren (bis zu einem Verhältnis Z/E = 1/1) eingeht.

Mit der vorliegenden Arbeit wollten wir herausfinden, ob auch Analoga von 1 der allgemeinen Zusammensetzung $C_5H_5Rh(=C=CHR)(P^iPr_3)$ mit Aziden R'N₃ zu Ketenimin-Rhodiumverbindungen reagieren und wenn ja, ob mit unterschiedlichen Substituenten R und R' wie im Fall von 3 die "side-on"- oder aber die "end-on"-Koordination bevorzugt ist. In den von Aumann beschriebenen Komplexen mit Chrom, Molybdän, Wolfram und Mangan als Zentralatom ist der Ketenimin-Ligand vorwiegend "end-on" über das Stickstoffatom koordiniert, was die Freisetzung des Ketenimins und damit die Verwendung der Komplexe in der organischen Synthese erleichtert [2].

Darstellung der Ketenimin-Komplexe 8-13

Die von uns schon früher synthetisierten Vinyliden-Verbindungen 1 und 4–7 [6,7] reagieren bereits bei -78° C in Pentan spontan mit Tosylazid und *ortho*-

Nitrophenylazid unter lebhafter Gasentwicklung zu den Ketenimin-Komplexen 8-13 (siehe Gl. 2). Diese fallen fast ausnahmslos als orangefarbene Niederschläge direkt aus der Reaktionslösung aus und können, falls notwendig (wie im Fall von 13), auch aus Pentan umkristallisiert werden. Die Verbindung 9 ist erst nach Protonierung zu dem entsprechenden Komplexsalz und anschliessender Deprotonierung mit NaOMe in analysenreiner From erhältlich. Die Komplexe 8 und 10-12, die in Pentan und Ether nur wenig löslich sind, lösen sich in polareren Solvenzien wie Aceton, THF, CHCl₃ oder Benzol sehr gut.

Der in Gl. 2 angegebene Strukturvorschlag mit jeweils N,C-koordiniertem Ketenimin-Liganden wird durch die spektroskopischen Daten gestützt. In den ¹H-NMR-Spektren von 8–13 erscheinen die Resonanzsignale für die Protonen des $C_5H_5Rh(P^iPr_3)$ -Fragments in den erwarteten Bereichen und mit dem für das Vorliegen einer chiralen Verbindung typischen Aufspaltungsmuster (Tab. 1). Signale im Bereich von δ 4.63–6.50 können den vinylischen Wasserstoffatomen zugeordnet werden. Für 9 und 10 findet man geminale bzw. vicinale H–H-Kopplungen von 1.9 bzw. 6.7 Hz, die im Einklang mit früheren Ergebnissen [5] das Vorliegen einer =CHCH₃- bzw. =CH₂-Gruppierung bestätigen.

Die ¹³C-NMR-Spektren von 8, 10 und 13 (für genaue Angaben siehe Experimentalteil) zeigen neben den Signalen für die Kohlenstoffatome des Cyclopentadienyl- und des Phosphan-Liganden sowie der Reste R und R' noch zwei weitere Absorptionen bei δ ca. 150 (Dublett-von-Dubletts) und 83–100 (Singulett), die dem metallgebundenen und dem freien C-Atom des Ketenimins entsprechen. In den ¹³C-NMR-Spektren nicht-komplexierter Ketenimine beobachtet man das Signal des zentralen, N-gebundenen Kohlenstoffatoms bei δ ca. 190 und hochfeldverschoben dazu dasjenige des endständigen C-Atoms bei δ 40–80 [8]. Über ¹³C-NMR-Daten von Metallkomplexen mit N,C-koordinierten Ketenimin-Liganden lagen unseres Wissens vor Beginn unserer Arbeiten (siehe hierzu auch [4]) keine Informationen vor.

Eine für die Verbindungen 8-12 ebenfalls denkbare Struktur mit einem

Komplex	8	C,H,		CHR=C=NSC	D ₂ C ₆ H ₄ CH ₃			P ⁱ Pr ₃			
		(Hd)/	J(RhH)	ð(CH)	δ(R)	δ(C ₆ H₄)	ð(CH ₃)	ð(CH ₃)	(Hd)/	(HH)/	ð(PCH)
30	5.29 (dd)	1.4	0.6	6.50 (d) ^a	7.60 (m)	8.03 (m)	1.89 (s)	1.04 (dd)	13.7	7.2	1.77 (m)
						6.84 (m)		0.85 (dd)	13.7	1.1	
•	5.26 (dd)	1.4	0.7	4.88 (ddq) ^b	1.70 (dd) °	8.03 (m)	1.90 (s)	1.02 (dd)	13.5	7.2	1.74 (m)
						6.82 (m)		1.00 (dd)	13.5	7.1	
10	5.26 (dd)	1.4	0.7	4.63 (m) ^d	4.97 (dd) °	8.09 (m)	1.89 (s)	(pp) 66.0	13.5	7.1	1.78 (m)
						6.83 (m)		(pp) 26.0	13.8	7.0	
11	5.27 (dd)	1.3	0.6	5.34 (dd) [/]	1.35 (s)	8.07 (m)	1.84 (s)	1.07 (dd)	13.7	7.1	1.77 (ш)
						6.80 (m)		(pp) 26.0	13.4	1.7	
12	5.27 (dd)	1.5	0.7	6.23 (dd) [/]	3.58 (s)	8.02 (m)	1.82 (s)	1.03 (dd)	13.8	7.0	1.73 (m)
						6.77 (m)		(pp) 16.0	13.8	7.0	
13	4.93 (dd)	1.1	0.5	6.36 (s,br)	80	80		1.02 (dd)	13.7	7.1	2.00 (m)
								0.94 (dd)	13.7	7.2	
J(PH) = 1	4 Hz. ^b J(HH)	= 6.7, J(P	¹ H) = 1.3, <i>J</i> (F	RhH) = 0.7 Hz. ^c	J(HH) = 6.7, J(1)	PH) = 0.7 Hz.	H cis zu R	iodium; Koppl	ungen sind	nur unzureicl	hend aufgelöst.
H trans zu	Rhodium; J(H	H) = J(PI	H) = 1.9 Hz.	J(PH) = 1.7; J()	RhH) = 0.7 Hz.	⁸ Mehrere Sig	nale für Phei	nylprotonen be	ei 8 8.16–6.	42, genaue 2	uordnung nicht
möglich.											

the second ware the second second

A DO ADDA MANA AND A DO ADDA

1

¹H-NMR-Daten der Komplexe 8–13, C₆D₆ (für 11 und 12: 90 MHz, sonst 200 MHz; 8 in ppm, TMS int.; J in Hz)

Tabelle 1

RhCNSO-Fünfring, gebildet durch [2 + 3]-Cycloaddition der Rh=C-Bindung mit dem Tosylnitren, lässt sich aufgrund der IR-Spektren ausschliessen. Man findet bei ca. 1300 und 1150 cm⁻¹ jeweils zwei intensive Banden, welche der asymmetrischen und der symmetrischen SO-Streckschwingung der SO₂-Gruppe des Tosylrestes zuzuordnen sind. Die Lage dieser Banden unterscheidet sich nur wenig von derjenigen verschiedener Palladiumkomplexe des Typs L₂Pd[R'NC(=O)NR'], wobei R' = *p*-MeC₆H₄SO₂ ist [9]. Die recht intensive (N=C=C)-Valenzschwingung beobachtet man in den IR-Spektren von 8–13 bei ca. 1640–1680 cm⁻¹, was mit den Daten vergleichbarer Ketenimin-Metallverbindungen gut übereinstimmt [2,10,11].

Molekülstruktur von C₅H₅Rh[η^2 -N,C-TosN=C=CHPh](PⁱPr₃) (8)

Zur Absicherung des Strukturvorschlags wurde für Komplex 8 eine Kristallstrukturanalyse durchgeführt. Das Ergebnis ist in Fig. 1 gezeigt; einige ausgewählte Bindungslängen und -winkel sind in Tab. 2 angegeben.

Erwartungsgemäss ist das in freien Keteniminen lineare N-C-C-Grundgerüst im Komplex stark abgewinkelt (Winkel N-C-C 135.7°). Vergleichbare Abknickungen von Heteroallen-Liganden findet man in den mit 8 gut vergleichbaren Thio- und Selenoketen-Rhodiumverbindungen $C_5H_5Rh[\eta^2-E=C=CH_2](P^iPr_3)$ (E = S: 138°, E = Se: 141°) [12], in Vanadin-, Nickel- und Uran-Komplexen mit N,C-gebundenen Keteniminen (140.5-144.2°) [10,11,13] und auch in der kürzlich von uns aus $C_5H_5Co(CNR)(PMe_3)$ (R = C_6H_{11}) und 9-Diazofluoren synthetisierten Cyclopentadienylcobalt-Verbindung $C_5H_5Co[\eta^2-N,C-RN=C=C(C_{12}H_8)](PMe_3)$ (138.5°) [4]. Die Tatsache, dass der N-C-C-Winkel in 8 kleiner ist als der C-C-C-Winkel in zahlreichen Allen-Metallkomplexen (142-158°) [14], deutet darauf hin, dass in 8 eine relativ starke Metall-Ketenimin-Rückbindung vorliegt.

Verbunden mit der "side-on"-Koordination ist ebenfalls eine beträchtliche

Fig. 1. ORTEP-Zeichnung von Verbindung 8.

•						
Rh-N	207.7(4)	RhC(5)	224.7(9)	C(7)-H(7)	91.2(5)	
Rh-P	230.4(2)	Rh-C(6)	200.0(5)	S-C(14)	179.2(5)	
Rh-C(1)	220(1)	N-C(6)	137.2(6)	S-O(1)	143.9(4)	
Rh-C(2)	227(1)	N-S	164.5(4)	S-O(2)	1 44.6(4)	
Rh-C(3)	223(1)	C(6)-C(7)	132.9(7)	P-C(21)	185.3(6)	
Rh-C(4)	225(1)	C(7)-C(8)	145.4(8)	P-C(22)	184.6(8)	
				P-C(23)	185.4(6)	
Rh-C(6)-C(7)	1	150.3(4)	C(6)-N-S		119.9(3)	
Rh-C(6)-N		73.4(3)	Rh-N-S		119.5(2)	
Rh-N-C(6)		67.3(3)	N-S-C(14)		102.3(2)	
N-Rh-C(6)		39.3(2)	N-S-O(1)		113.2(2)	
P-Rh-N		86.4(1)	N-S-O(2)		106.9(2)	
P-Rh-C(6)		93.5(1)	O(1)-S-O(2)		116.9(2)	
N-C(6)-C(7)		135.7(2)	O(1)-S-C(14	l)	107.6(2)	
C(6)-C(7)-H(7)	115.8(5)	O(2)-S-C(14	b)	109.1(2)	
C(6)-C(7)-C(8	8)	127.5(5)	Rh-P-C(21)		111.1(2)	
C(8)-C(7)-H(7)	116.6(5)	Rh-P-C(22)		113.3(2)	
			Rh-P-C(23)		115.0(2)	

Ausgewählte Abstände (pm) und Winkel (Grad) in 8 (Standardabweichungen in Einheiten der letzten signifikanten Stelle in Klammern)

Aufweitung des in freien Keteniminen auffällig kurzen C--N-Abstands von 121-124 pm [15] auf 137.2 pm in 8. Eine ähnliche Bindungsdehnung wurde auch in den bisher röntgenographisch untersuchten Verbindungen mit η^2 -N,C-koordinierten Ketenimin-Liganden beobachtet [4,10,11,13]. Die N-C6-Bindung besitzt somit weitgehend Einfachbindungscharakter, so dass für die Beschreibung der Bindungsverhältnisse, zumindest im Kristall, der Grenzformel A wahrscheinlich ein grösseres Gewicht als der Grenzformel B zukommt.

Der Abstand C6-C7 entspricht mit 132.9 pm dem einer C=C-Doppelbindung. Der Phenylring an C7 liegt in der gleichen Ebene wie die Bindung C6-C7, so dass das konjugierte System erhalten bleibt. Der Phenylrest der Tosylgruppe ist nahezu im rechten Winkel zu der vorher erwähnten Ebene angeordnet, was möglicherweise auf den Einfluss des sperrigen PⁱPr₃-Liganden zurückzuführen ist.

Die Verbindung 8 besitzt mit dem Rhodiumatom und dem als sp^3 -hybridisiert anzunehmenden Stickstoffatom zwei chirale Zentren. Von den beiden damit prinzipiell möglichen Enantiomerenpaaren wird im Kristall nur eines gefunden, und zwar dasjenige mit der Tosylgruppe in *cis*-Anordnung zum Fünfringliganden. Die NMR-Spektren von 8 weisen lediglich den einfachen Signalsatz auf, was im Zusammenhang mit dem Ergebnis der Kristallstrukturanalyse so interpretiert werden kann, dass entweder die [2 + 1]-Cycloaddition des Tosylnitrens an die Rh=C-Bin-

Tabelle 2

dung des Vinylidenkomplexes regio- und stereospezifisch erfolgt oder dass in Lösung eine rasche Inversion am pyramidalen Stickstoffatom stattfindet. Im letzteren Fall würden die beiden möglichen Invertomeren miteinander in einem bezüglich der NMR-Zeitskala schnellen Gleichgewicht stehen, so dass in den NMR-Spektren nur ein Signalsatz zu beobachten ist. Temperaturabhängige NMR-Messungen im Bereich von -90 bis +45°C lassen allerdings keine Veränderung erkennen, so dass vieles für die Bildung nur eines Enantiomerenpaares spricht. Eine rasche Rotation des Ketenimin-Liganden um die Metall-Ligand-Bindungsachse, wie sie bei der Nickelverbindung Ni $[\eta^2-N, C-({}^{1}Bu)N=C=C(CN)_2)](CN{}^{1}Bu)_2$ vermutet wird [11], ist für **8** wegen der in den NMR-Spektren erkennbaren Diastereotopie der Methylprotonen des PⁱPr₃-Liganden auszuschliessen.

Isomerisierung der Komplexe 8 und 13

Wie einleitend bereits erwähnt, entsteht bei der Umsetzung von 1 mit Phenylazid zunächst das Z-Isomere von 3, das in Benzol-Lösung relativ rasch in das E-Isomere umlagert [5]. Unter vergleichbaren Bedingungen gehen auch die Komplexe 8 und 13 eine Isomerisierung ein, die jedoch wesentlich langsamer verläuft und überraschenderweise zu den Verbindungen 14 und 15 mit C, C-gebundenen Ketenimin-Liganden führt. Es handelt sich dabei um mässig luftempfindliche, feste bzw. ölige Substanzen, deren Löslichkeitseigenschaften denen der Ausgangskomplexe entsprechen. Versuche, die Isomerisierung photochemisch zu beschleunigen, hatten keinen Erfolg.

Der in Gl. 3 gezeigte Strukturvorschlag stimmt mit dem vorliegenden spektroskopischen Datenmaterial überein. Der auffallendste Unterschied in den ¹H-NMR-Spektren von 8/13 und 14/15 ist die Lage des Signals des =CHPh-Protons. Während dieses für 8 und 13 bei δ ca. 6.5 erscheint, ist es für 14 und 15 um mehr als 3.5 ppm hochfeldverschoben und wird bei δ ca. 2.9 beobachtet. Im Fall einer Z/E-Isomerisierung an der exocyclischen Doppelbindung wäre (unter Beibehaltung der N,C-Koordination) eine Änderung der chemischen Verschiebung des =CHPh-Signals um nicht mehr als 0.3 ppm zu erwarten [5]. Für den Strukturvorschlag spricht auch, dass in den von uns beschriebenen Allen-Komplexen C₅H₅Rh[η^2 -CH₂=C=CHR](PⁱPr₃) [12] das Signal des =CHR-Protons an praktisch der gleichen Stelle wie in den Spektren von 14 und 15 auftritt.

Die Verbindungen 14 und 15 besitzen ebenso wie die N,C-gebundenen Isomeren zwei Chiralitätszentren. Es könnten daher zwei Enantiomerenpaare entstehen, von denen jedoch-wie die ¹H-NMR-Spektren zeigen-nur eines gebildet wird. Die beiden möglichen Konfigurationsisomere sind in Fig. 2 anhand von Newman-Pro-

Fig. 2. Konfigurationsisomere der Verbindungen 14 und 15.

jektionsformeln dargestellt. In C steht das vinylische Wasserstoffatom der CHPh-Gruppierung syn zum PⁱPr₃-Liganden, in D syn zum Cyclopentadienylring.

Einen guten Hinweis darauf, in welcher der beiden Formen (C oder D) die Komplexe 14 und 15 vorliegen, liefert die Grösse der für das vinylische Proton ermittelten PH-Kopplungskonstante. Diese hängt in Atomgerüsten des Typs H-C-M-P entscheidend vom Diederwinkel Θ ab. Die grössten Werte sind bei *syn*- oder *anti*-coplanarer Anordnung von Phosphor- und Wasserstoffatom zu erwarten [16]. So werden z.B. in den ¹H-NMR-Spektren von C₅H₅Rh(CH₂Cl)(PⁱPr₃)I [17] und C₅H₅Rh(CHClCH₃)(PⁱPr₃)Cl [18] für das *anti*-coplanar zum Phosphoratom stehende Proton des Alkylliganden PH-Kopplungskonstanten von 6.8 bzw. 6.4 Hz gefunden und für die Verbindungen C₅H₅Rh(η^2 -CH₃CHE)(PⁱPr₃) (E = S, Se) [19] mit *syn*-coplanarer Anordnung des Methinprotons zum Phosphor Werte in der gleichen Grössenordnung. Aufgrund der für 14 und 15 ermittelten PH-Kopplungskonstanten von 11.7 bzw. 9.3 Hz nehmen wir daher an, dass die Verbindungen eine Struktur, wie in C angegeben, besitzen.

Die ¹³C-NMR-Daten von 13 und 15 bestätigen ebenfals die unterschiedliche Koordination des Ketenimins in diesen beiden Verbindungen. Im Spektrum von 15 erscheint ein Dublett-von-Dubletts bei δ 202.8, das dem metallgebundenen, zentralen C-Atom des Ketenimin-Liganden zuzuordnen ist. Das entsprechende Signal für das N,C-gebundene Isomer 13 wird bei δ 151.2, d.h. um ca. 50 ppm hochfeldverschoben, beobachtet. Die Resonanz für das Kohlenstoffatom der CHPh-Einheit liegt im Spektrum von 15 bei δ 3.9 (vgl. 13: δ 98) und weist eine RhC-Kopplung von 11.2 Hz auf. In nahezu gleicher Lage und mit fast identischer RhC-Kopplung wird das Signal des CHPh-Kohlenstoffatoms des Allen-Komplexes C₅H₅Rh[η^2 -CH₂=C=CHPh](PⁱPr₃) gefunden [12].

Bezüglich des Mechanismus der Isomerisierung von 8 zu 14 und von 13 zu 15 nehmen wir an, dass ähnlich wie in den Tetramethylallen-Verbindungen $Fe[\eta^2-Me_2C=C=CMe_2](CO)_4$ [20] und $[PtCl_2(\eta^2-Me_2C=C=CMe_2)]_2$ [21], die in Lösung eine fluktuierende Struktur besitzen, durch eine 90°-Rotation der C₅H₅Rh(PⁱPr₃)-Einheit um den Ketenimin-Liganden unter gleichzeitiger Verschiebung des Metallschwerpunkts das N,C-gebundene in das C,C-gebundene Isomer übergeht. Bei einer Z/E-Isomerisierung müsste eine Drehung um 180° eintreten, was im vorliegenden Fall—im Gegensatz zu der Situation bei dem aus Phenylazid erhaltenen Komplex 3 —energetisch offensichtlich ungünstiger ist. Molekülmodelle deuten an, dass für den Unterschied wahrscheinlich sterische Einflüsse massgebend sind, da die Wechselwirkungen zwischen der Phenylgruppe des Tosylrestes bzw. der orthoNitrophenylgruppierung und dem $C_5H_5Rh(P^iPr_3)$ -Molekülfragment am ehesten durch einen Wechsel von der N,C- in die C,C-Koordination reduziert werden können.

Reaktionen der Ketenimin-Komplexe 8-12 mit HBF₄

Die nachfolgend beschriebenen Studien über die Protonierung der Verbindungen 8-12 haben wir durchgeführt, um herauszufinden, an welcher Stelle der Rh[η^2 -R'N=C=CHR]-Einheit ein elektrophiler Angriff bevorzugt erfolgt. Aus früheren Untersuchungen war bekannt [5,22], dass fünfgliedrige Metalla-Heterocyclen, die eine exocyclische C=C-Bindung aufweisen, mit Säuren entweder unter Protonierung am Stickstoffatom oder an der C=C-Doppelbindung reagieren.

Bei der Umsetzung von 8–12 mit HBF₄ in Ether bei -78° C und nachfolgendem Erwärmen auf Raumtemperatur erhält man zunächst braune voluminöse Niederschläge, die nach Umkristallisation aus Aceton/Ether orangefarbene luftstabile Feststoffe liefern. Wie die Analysenergebnisse zeigen, liegen 1:1-Addukte der Ausgangskomplexe mit HBF₄ vor, deren Leitfähigkeitswerte denjenigen von 1:1-Elektrolyten entsprechen. Das ausgehend von 12 gebildete Produkt wird erst nach Umfällen mit NH₄PF₆ in Methanol in analysenreiner Form isoliert. Ihrem salzartigen Charakter gemäss lösen sich die Verbindungen 16–20 vorzüglich in Aceton oder Nitromethan und sind in Ether oder Pentan unlöslich. Ein Strukturvorschlag ist in Schema 1 wiedergegeben.

Die ¹H-, ¹³C- und ³¹P-NMR-Spektren der Komplexe 16-19 (für genaue Angaben siehe Tab. 3 und 4) zeigen jeweils einen doppelten Signalsatz, was auf das Vorliegen von zwei Isomeren schliessen lässt. Wir halten es für sehr unwahrscheinlich, dass eines davon einen nur über Kohlenstoff gebundenen Acylimino-Liganden enthält, da eine solche Annahme mit der Stabilität der Komplexe (auch gegenüber Luft) nicht in Einklang zu bringen ist. Plausibler dürfte sein, dass der Acylimino-Ligand

Schema 1

—wie die Ketenimine in den entsprechenden Verbindungen 8–11—über N und C koordiniert ist und bei der Umsetzung mit HBF₄ zwei Enantiomerenpaare entstehen. In einem davon ist die Tosylgruppe vermutlich in *cis*-Stellung und im anderen in *trans*-Stellung zum Cyclopentadienylring angeordnet. Für 16–18 liegen die beiden Enantiomerenpaare im Verhältnis von ca. 70/30, im Fall von 19 im Verhältnis von ca. 60/40 zugunsten des sterisch weniger gehinderten *cis*-Isomeren vor. Die Zahlenwerte wurden aus den relativen Intensitäten der Signale für die C_5H_5 -Protonen in den ¹H-NMR-Spektren ermittelt. Bei der am Stickstoffatom protonierten Verbindung 20 geben die Spektren keine Hinweise auf das Vorliegen von zwei Isomeren. Wir nehmen an, dass auch hier die sterisch weniger gehinderte Form mit der Tosylgruppe in *cis*-Stellung zum Fünfring vorliegt.

Eine Trennung der Enantiomerenpaare der Komplexe 16-19 durch fraktionierende Kristallisation ist nicht gelungen. Bei dem Versuch der Trennung durch Säulenchromatographie an Alox V (neutral oder basisch) mit Dichlormethan als Laufmittel findet eine Deprotonierung unter Rückbildung der Neutralverbindungen 8-11 statt. Die gleiche Reaktion (siehe Gl. 4) tritt auch bei Zugabe von NaOMe zu Lösungen von 16-19 in Methanol ein.

16 - **19**
$$\xrightarrow{\text{NaOMe}}$$
 8 - **11** (4)

Der durch die Rückbildung der Komplexe 8-11 aus 16-19 angezeigte acide Charakter der Methylenprotonen der CH_2R -Gruppierung ist auch durch Deuterierung nachweisbar. Nach Zugabe einiger Tropfen D₂O zu einer Lösung von 16-19 in CD_3NO_2 findet innerhalb von 2 Stunden bei 60°C ein vollständiger H/D-Austausch statt, der sich im Verschwinden des Signals für die CH_2R -Protonen im ¹H-NMR-Spektrum zu erkennen gibt. In Lösung existiert offensichtlich ein Gleichgewicht zwischen den Komplexkationen von 16-19 und den Neutralverbindungen 8-11, das in Abwesenheit einer Base praktisch vollständig auf der Seite des Kations liegt. Mechanistisch dürfte der H/D-Austausch so verlaufen, wie es früher von uns an einem vergleichbaren Cobalta-Heterocyclus interpretiert worden ist [22].

Von den spektroskopischen Daten der durch die Protonierung gebildeten Komplexkationen sind die Signale der diastereotopen Methylenprotonen der CH_2R -Gruppierung von 16, 17 und 19 besonders hervorzuheben. In den ¹H-NMR-Spektren von 16 und 19 beobachtet man das Aufspaltungsmuster eines AB-Spinsystems bei δ ca. 4.9 bzw. 3.5, wobei die vicinale Kopplung erwartungsgemäss im Bereich von 18-20 Hz liegt. Im Fall von 17 resultiert für die Protonen der Ethylgruppe ein Linienmuster, das einem Spinsystem vom ABX₃-Typ entspricht. Sowohl für 16 und 19 als auch für 17 wurde die Auswertung des Spektrums durch eine Computersimulation bestätigt. Die ¹³C-NMR-Spektren von 16-19 zeigen als charakteristisches Signal ein Dublett-von-Dubletts bei ca. 250, das dem metallgebundenen C-Atom zugeordnet wird und im gleichen Bereich wie die Signale der Carben-Kohlenstoffatome von Aminocarben-Komplexen liegt [23].

Strukturbeweisend für die Verbindung 20, die durch Addition des Protons am Stickstoffatom entsteht, ist in erster Linie das IR-Spektrum, das eine scharfe Bande bei 3343 cm⁻¹ aufweist, die einer NH-Valenzschwingung entspricht. Im ¹H-NMR-Spektrum von 20 erscheint ein (durch das Quadrupolmoment des Stickstoffatoms) verbreitertes Singulett für das NH-Proton bei δ 8.44 sowie ein Dublett-von-Dubletts für das Vinylproton der C=CHCO₂Me-Gruppierung bei δ 6.02. Es besteht damit

Tabelle 3

, 85% H ₃ PO4 ext.; J in Hz)	
4Hz; & in ppm, TMS int.; ³¹ P: 90 MHz; & in ppm	
omplexe 16-19 (cis und trans), in CD_3NO_2 (¹ H: 200 M	
H- und ³¹ P-NMR-Daten der K	

Komplex	С,Н,			RhC(CH ₂ R)	VSO2C6H4CH	E		P ¹ Pr ₃				δ(P)
	8	(Hd)/	J(RhH)	δ(CH ₂ R)	δ(R)	δ(C ₆ H ₄)	δ(CH ₃)	δ(CH ₃)	(Hd)	(HH)/	δ(PCH)	
cis-16	5.85 (dd)	1.1	0.4	4.89 (d) ^a	7.56 (m) ^b	7.56 (m) ^b	2.51 (s)	1.45 (dd)	14.9	7.1	2.67 (m)	58.02 (d) ^c
				4.84 (d) "				1.43 (dd)	15.0	7.2		
trans-16	5.92 (dd)	1.4	0.6	4.79 (d) ^d	7.56 (m) ^b	7.56 (m) ^b	2.45 (s)	1.35 (dd)	14.9	7.2	2.52 (m)	57.65 (d) °
				4.74 (d) ^d				1.30 (dd)	15.0	7.2		
cis-17	5.87 (dd)	1.2	0.6	3.72 (dq) [/]	1.32 (t) ^g	7.84 (m) [#]	2.50 (s)	1.41 (dd)	14.8	7.2	2.72 (m)	57.11 (d) ⁱ
				3.50 (dq) [/]		7.53 (m) *		1.39 (dd)	14.9	7.1		
trans-17	5.97 (dd)	1.1	0.5	×	,	7.84 (m) [*]	2.47 (s)	1.28 (dd)	14.9	7.1	2.45 (m)	E
						7.53 (m) *		(pp) (1.23	14.8	7.1		
cis-18	5.89 (dd)	1.1	0.5	3.28 (s)	3.18 (s)	7.91 (m) ⁴	2.51 (s)	1.41 (dd)	14.9	7.1	2.73 (m)	57.60 (d) ⁽
						7.53 (m) *		1.39 (dd)	15.0	7.1		
trans-18	5.96 (dd)	1.0	0.5	3.15 (s)	3.15 (s)	4 (ш) 16.7	2.47 (s)	1.24 (dd) "	14.8	7.4	2.44 (m)	57.55 (d) °
						7.53 (m) ⁴						
cis-19	5.83 (dd)	1.4	0.6	3.46 (d) ^{h.p}	1.12 (s)	7.88 (m) ^h	2.51 (s)	1.42 (dd)	14.9	7.1	2.66 (m) ^h	56.70 (d) ⁱ
				3.39 (d) ^{h.p}		7.55 (m) *		1.40 (dd)	14.8	7.1		
trans-19	5.95 (dd)	1.4	0.6	3.46 (d) ^{<i>h.p</i>}	1.18 (s)	7.88 (m) ^h	2.47 (s)	1.29 (dd)	14.8	7.1	2.66 (m) ^h	55.98 (d) ^q
				3.39 (d) ^{A.P}		7.55 (m) ^h		1.25 (dd)	14.9	7.2		
^a J(HH) _{vic}	=18.5 Hz. ^b	Signale d	er C ₆ H ₅ - ur	id C ₆ H ₄ -Proto	nen überlappe	:n. [°] J(RhP) =	= 141.4 Hz.	$\frac{d}{J(HH)_{vic}} = 1$	17.6 Hz.	J(RhP) = 1	44.4 Hz. [/] J	$((\rm HH)_{vic} = 19.0,$
J(HH) _{gem} =	6.9 Hz. ⁸ J(HH) = 6.9	Hz. " Signal	e der beiden Is	omeren fallen	zusammen.	J(RhP) = 14	3.0 Hz. * AB-'	Teil des Al	8X ₃ -Spinsy:	stems wird ve	om AB-Teil des
Hauptisome beiden Isom	ren weitgehe eren fallen zi	nd verdecl	ct, genaue Z	uordnung dahe one Verschiehu	r nicht möglic ma sehr blein	ch. ' Signal de wird wrter de	r Methylgru n Meerbedin	ppe liegt unte	r Signalen	der PCHC	H_3 -Protonen	. ^m Signale der иччу – 10 0
Hz. ^q J(Rh) = 147.4 Hz		DIASICI COL						auigeiost.		1-0.041	7.21 - 12.21

| |

;

:

1 1

ļ

· · 1 · · i i i

C) J(PC) 11.2	8(CH ₂ R) 63.28 (s)	δ(R) a	δ(C ₆ H ₄ CH ₃)	δ(PCH)	J(PC)	δ(CH ₃)
11.2	63.28 (s)	a				
111			21.90 (s) °	28.68 (d)	22.5	20.36 (s) 19.94 (s)
1.11	U	q	21.83 (s) ^e	28.24 (d)	22.3	20.12 (s)
11.1	52.39 (s)	12.16 (s)	21.89 (s) ^g	28.57 (d)	22.5	20.27 (s) 19.75 (s)
10.9	52.07 (s)	11.94 (s)	21.83 (s) ^h	28.02 (d)	22.6	20.01 (s)
11.6	44.54 (s)		21.90 (s) ⁱ	28.67 (d)	22.7	20.30 (s) 19.79 (s)
1.11	44.18 (s)		21.85 (s) ^k	26.69 (d)	25.5	20.05 (s)
10.4	71.29 (s)	-	21.92 (s) "	28.68 (d)	22.5	20.11 (s)
10.3	70.87 (s)	0	21.88 (s) ^p	28.17 (d)	22.9	20.38 (s) 7
10.9 11.6 11.1 10.4		52.07 (s) 44.54 (s) 44.18 (s) 71.29 (s) 70.87 (s)	52.07 (s) 11.94 (s) 44.54 (s) 44.18 (s) 71.29 (s) 70.87 (s) °	52.07 (s) 11.94 (s) 21.83 (s) ^h 44.54 (s) 21.90 (s) ⁱ 44.18 (s) 21.85 (s) ^k 71.29 (s) ⁱ 21.92 (s) ^m 70.87 (s) ^o 21.88 (s) ^p	52.07 (s) 11.94 (s) 21.83 (s) * 28.02 (d) 44.54 (s) 21.90 (s) * 28.67 (d) 44.54 (s) 21.80 (s) * 28.66 (d) 44.18 (s) 21.85 (s) * 26.69 (d) 71.29 (s) 21.92 (s) * 28.68 (d) 70.87 (s) 21.88 (s) * 28.17 (d)	52.07 (s) 11.94 (s) 21.83 (s) * 28.02 (d) 22.6 44.54 (s) 21.90 (s) * 28.67 (d) 22.7 44.18 (s) 21.85 (s) * 26.69 (d) 25.5 71.29 (s) 21.92 (s) * 28.68 (d) 22.5 70.87 (s) 21.88 (s) * 28.17 (d) 22.5

1

;

1

1

l i ł

1

: . .

248

Fig. 3. Signale der C_5H_5 -Protonen im ¹H-NMR-Spektrum von 16 bei verschiedenen Temperaturen (Signale gespreizt, ³¹P-entkoppelt).

kein Zweifel, dass bei der Protonierung die exocyclische C=C-Doppelbindung unverändert geblieben ist. Die Ursache für das unterschiedliche Reaktionsverhalten der Verbindungen 8-11 und des Komplexes 12 gegenüber HBF₄ könnte darin liegen, dass durch die Akzeptorfähigkeit des CO₂Me-Substituenten die π -Elektronendichte der C=C-Doppelbindung verringert und somit der Angriff des Protons bevorzugt auf das Stickstoffatom gelenkt wird.

Um die Frage zu beantworten, ob die für 16-19 NMR-spektroskopisch nachgewiesenen Isomeren ineinander umwandelbar sind, wurden exemplarisch mit 16 temperaturabhängige ¹H-NMR-Messungen von -90 bis +90°C durchgeführt. Man erkennt—wie in Fig. 3 für den Bereich der Cyclopentadienylprotonen gezeigt —ab +33°C zusätzlich zu den zwei, von den beiden isomeren Formen von 16 herrührenden Signalen ein weiteres Resonanzsignal, das mit steigender Temperatur an Intensität gewinnt, bis am Koaleszenzpunkt bei ca. 60°C nicht mehr zwischen den einzelnen Linien unterschieden werden kann.

Das Auftreten eines dritten Signals schliesst unserer Meinung nach eine Umlagerung der bei Raumtemperatur vorliegenden Isomeren durch Inversion am pyramidalen Stickstoffatom oder durch Rotation des Acylimino-Liganden um die Rh-CN-Bindungsachse aus. Wir nehmen daher an, dass das zusätzliche Signal einer acyclischen Form $16[\eta^1]$ zugeordnet werden muss, die mit den *cis*- und *trans*-Isomeren im Gleichgewicht steht (siehe Gl. 5). Die freie Koordinationsstelle in $16[\eta^1]$ ist möglicherweise durch ein Solvensmolekül (CD₃NO₂) besetzt. Die Zunahme der Konzentration von $16[\eta^1]$ mit steigender Temperatur ist plausibel, ebenso wie die Beobachtung, dass nach dem Abkühlen die beiden thermodynamisch stabilen Isomeren von 16 im gleichen Verhältnis wie vor Beginn der Messung vorliegen.

Synthese weiterer neutraler und kationischer Acylimino-Rhodiumverbindungen

Die in Gl. 5 diskutierte η^1 -Form der kationischen Acylimino-Komplexe sollte sich durch anionische oder neutrale Nucleophile abfangen lassen. Wir hatten schon bei früheren Untersuchungen zur Reaktivität der ausgehend von C₅H₅Co(CNR)-(PMe₃) und Methyliodid erhaltenen Acylimino-Cobaltverbindungen gefunden, dass eine Öffnung des in dem Kation von [C₅H₅Co(η^{2-1} BuN=CMe)(PMe₃)]I vorliegenden CoNC-Dreirings durch Zugabe von Trimethylphosphan möglich ist [24].

Bei Umsetzung der Komplexe 16–19 mit NaN₃ oder PⁱPr₃ in Aceton bei – 20 bis + 20 °C sind lediglich Produktgemische erhältlich, deren Auftrennung in die einzelnen Komponenten durch Chromatographie oder Umkristallisation nicht gelingt. Bei Einwirkung äquimolarer Mengen NaI auf Lösungen von 16–18, ebenfalls in Aceton, bilden sich dagegen in sehr guter Ausbeute die Verbindungen 21–23, die nach extraktiver Aufarbeitung und anschliessender Umkristallisation aus Ether/Pentan in Form tiefroter, kurzzeitig an Luft handhabbarer Feststoffe isoliert werden. Von ihnen sind 22 und 23 durch geringe Mengen (ca. 10%) von 28 verunreinigt, die nicht vollständig abgetrennt werden können. 22 und 23 wurden daher NMR-spektroskopisch charakterisiert. Aus 16 und Methylisocyanid entsteht das Komplexsalz 24 (siehe Schema 2), das gelbe, wenig luftempfindliche Kristalle bildet.

Die den Neutralverbindungen 21 und 23 entsprechenden Chloro-Derivate 25 und 26 bilden sich ausgehend von den Ketenimin-Komplexen 8 und 10 und Chlorwasserstoff. Während es bei der Reaktion von 8 unerheblich ist, ob 30 Sekunden oder 3 Minuten HCl-Gas in die Lösung eingeleitet wird, ist es für die Isolierung von 26 erforderlich, dass man die Ausgangsverbindung 10 mit einer äquimolaren Menge HCl in Benzol umsetzt. Wird ähnlich wie bei der Synthese von 25 in eine Toluoloder THF-Lösung von 10 bei -78° C HCl eingeleitet, so entsteht unter Verlust des Ketenimin-Liganden der schon literaturbekannte Dichloro-Komplex $C_5H_5RhCl_2$ -(PⁱPr₃) [18].

Die Löslichkeit und die spektroskopischen Daten der Verbindungen 21-26entsprechen weitgehend der Erwartung. Das Vorliegen eines Chiralitätszentrums in den Molekülen von 21-23, 25 und 26 wird in den ¹H-NMR-Spektren durch die Verdopplung der Signale der diastereotopen Protonen der Methylgruppen des Triisopropylphosphan-Liganden belegt (siehe Tab. 5). Im Fall von 24 ist die diastereotope Verschiebung wahrscheinlich zu klein, um unter den Messbedingungen aufgelöst zu werden. Die Unterschiedlichkeit der CH₃-Gruppen des Phosphans ist für diese Verbindung jedoch durch das ¹³C-NMR-Spektrum bewiesen.

Weder in den Spektren der Neutralverbindungen 21-23, 25 und 26 noch in dem

Schema 2

Spektrum des kationischen Komplexes 24 finden sich Hinweise, dass zwei Isomere, die sich durch die Stellung der Tosylgruppe an der C=N-Doppelbindung unterscheiden könnten, vorliegen. Die Existenz derartiger Isomere ist von Acylimino-Molybdän-, -Platin- und -Eisen-Verbindungen bekannt [25–27] und im letzteren Fall auch durch chromatographische Trennung der beiden Formen bestätigt worden [27].

Die ¹H-NMR-Spektren von 21 und 25 zeigen für die Methylenprotonen der CH₂R-Gruppierung ähnlich wie im Fall von 16 und 19 ein AB-Muster mit einer HH-Kopplung von ca. 12 Hz. Im Spektrum von 22 ist für die Ethylprotonen ein Linienmuster vom ABX₃-Typ zu beobachten. Die vier AB-Subspektren erscheinen im Bereich von δ ca. 4, während der X-Teil bei δ ca. 1.5 liegt. Die vorgenommene Auswertung wurde auch hier durch eine Computersimulation bestätigt.

Gut interpretierbare ¹³C-NMR-Spektren der gemäss Schema 2 synthetisierten Acylimino-Komplexe konnten nur von 24 und 25 erhalten werden. Die anderen Verbindungen sind in Lösung relativ labil und gehen eine Folgereaktion ein, die im nächsten Abschnitt beschrieben ist. Erwartungsgemäss findet man in den Spektren von 24 und 25 in Übereinstimmung mit der Chiralität der Komplexe eine Signalverdopplung für die diastereotopen Methyl-C-Atome der PⁱPr₃-Liganden. Das charakteristische Dublett-von-Dubletts bei δ ca. 220 ist dem metallgebundenen Kohlenstoffatom zuzuordnen. Dieses Signal liegt im gleichen Bereich wie dasjenige des Carben-C-Atoms der von Jones und Feher aus einer Isocyanid-Vorstufe hergestellten Aminocarben-Rhodiumverbindung C₅Me₅RhCl₂[=C(NHR)R'] (R = CH₂-^tBu, R' = p-C₆H₄Me) [28].

Versuche, die Acylimino-Komplexe 21-23 in entsprechende kationische Amino-

	: 0										
Komplex	C ₅ H ₅			C(CH2K)=N	SU2C6H4CH3			P'Pr ₃			
	Ş	J(PH)	J(RhH)	δ(CH ₂ R)	ð(R)	δ(C ₆ H ₄)	δ(CH ₃)	8(CH ₃)	J(PH)	(HH)/	δ(PCH)
21	4.75 (dd)	2.0	0.5	6.14 (d) ^a	8.18 (m)	7.60 (m)	1.95 (s)	(pp) 16.0	13.7	7.2	2.43 (m)
				5.65 (d) "		6.84 (m)		0.83 (dd)	13.9	7.1	× ¢
22	5.06 (dd)	1.7	0.5	4.28 (dq) ^h	1.53 (t) ^c	7.92 (m)	1.97 (s)	(pp) 86.0	14.3	7.3	2.48 (m)
				4.21 (dq) ^b		6.88 (m)		(0.87 (dd)	13.6	7.2	× *
23	4.96 (dd)	2.0	0.5	3.93 (d) ^d		7.94 (m)	1.95 (s)	0.94 (dd)	13.9	7.3	2.44(m)
						6.85 (m)		(pp) 1810	13.7	7.1	•
ъ,	5.38 (d)	1.5		ł	7.55 (m) ⁸	7.55 (m) ⁸	2.46 (s)	1.12 (dd) *	14.9	7.1	2.58 (m)
25	4.78 (dd)	1.8	0.4	5.18 (d) ⁱ	×	¥	2.43 (s)	1.13 (dd)	14.0	7.0	2.40 (m)
				4.93 (d) [/]				1.03 (dd)	13.5	7.0	
26	4.90 (dd)	1.7	0.5	3.68 (d) [/]		7.94 (m)	1.95 (s)	(pp) (dd)	12.9	7.1	2.39 (m)
						6. 4 5 (m)		0.85 (dd)	12.9	1.1	
a J(HH) = 1	$1.7 \text{ Hz}^{b} J(\text{H})$	$\mathrm{H})_{vic}=7.4,$	$J(\mathrm{HH})_{\mathrm{gem}} =$	3.8 Hz. ⁽ J(HH)	= 7.4 Hz. ^d J(F	PH) = 1.0 Hz.	δ(CNCH ₃) 3	89 (s). ^f Signal n	hicht genau l	okalisierbar,	möglicherweise
VOID AUGUE	in der ruospi	lanprouvien	I VERUCCIAL.	ריים לי	H5-Frotonen	ergeben preues	Multiplett.	Diastereotope	Verschiebu	ing sehr kle	in, wird unter
Messbeding	ungen nicht au	ıfgelöst. 'J((HH) = 11.6 F	Iz. * Multipletts	für C ₆ H ₅ -Prot	onen bei 8 7.89) und 7.32, ge	naue Zuordnung	g nícht mögl	ich. ' J(PH)	= 0.7 Hz.

: 1 1

¹H-NMR-Daten der Komplexe 21–26 (für 21–23 und 26 in C₆D₆, für 24 in (CD₃)₂CO, für 25 in CDCl₃; 200 MHz für 25, sonst 90 MHz; 8 in ppm, TMS int.; J in Hz)

Tabelle 5

carben-Rhodiumverbindungen $[C_5H_5Rh(=C(NR'Tos)CH_2R)(P^iPr_3)I]^+$ zu überführen, sind nicht gelungen. Sowohl bei der Umsetzung von 21 mit CF₃SO₃Me als auch mit HBF₄ (jeweils in Aceton) entsteht das Komplexkation von 16, wobei im ersteren Fall auch Methyliodid als Reaktionsprodukt nachweisbar ist. 21 verhält sich somit anders als die vergleichbare Cobaltverbindung C₅H₅Co[C(=NMe)-Me](PMe₃)I, die bei Protonierung den erwarteten Carbenkomplex bildet [29].

Sulfinato-Rhodiumkomplexe durch Nitril-Abspaltung aus Acylimino-Verbindungen

Die oben bereits erwähnte Labilität der neutralen Acylimino-Verbindungen 21–23 und 26 eröffnet überraschenderweise einen Weg zu den Sulfinato-Rhodiumkomplexen 27 und 28 (Gl. 6). Nach 5-tägigem Rühren bei Raumtemperatur oder nach 30-minütigem Erwärmen auf 60 °C einer Chloroform-Lösung von 21–23 bzw. 26 bilden sich diese Verbindungen in nahezu quantitativer Ausbeute und werden in Form orangefarbener bzw. roter, nur wenig luftempfindlicher Feststoffe isoliert. Als Nebenprodukt (mit einem Anteil von ca. 10%) entstehen auch die Dihalogeno-Komplexe C₅H₅RhX₂(PⁱPr₃) (X = Cl, I). Das bei der Bildung von 27 und 28 freiwerdende Nitril RCH₂CN ist gaschromatographisch einwandfrei nachweisbar.

Der in Gl. 6 angegebene Strukturvorschlag für die Verbindungen 27 und 28 wird durch die spektroskopischen Daten gestützt. Aussagekräftig sind vor allem die IR-Spektren, in denen zwei intensive Banden bei 1204 und 1088 cm⁻¹ (für 27) bzw. 1206 und 1086 cm⁻¹ (für 28) auftreten, die der asymmetrischen und symmetrischen SO-Valenzschwingung zuzuordnen sind. Sie sind im Vergleich zu den Banden organischer Sulfonylderivate (wie z.B. p-MeC₆H₄SO₂Cl) um ca. 100 cm⁻¹ nach tieferen Wellenzahlen verschoben. In sehr ähnlicher Lage wie für 27 und 28 werden die SO-Valenzschwingungen auch in den IR-Spektren von S-gebundenen Sulfinato-Iridium- und Sulfinato-Wolfram-Verbindungen beobachtet [30,31]. Die ¹H-, ¹³C- und ³¹P-NMR-Spektren der Komplexe 27 und 28 zeigen die erwarteten Signale und bedürfen keiner weiteren Interpretation.

Fazit

Mit der vorliegenden Arbeit haben wir gezeigt, dass die Bildung von Ketenimin-Rhodiumkomplexen aus entsprechenden Vinylidenmetall-Vorstufen und Aziden nicht auf PhN_3 als Substrat beschränkt ist. Der damit eröffnete Syntheseweg kann als eine wertvolle Ergänzung zu den bisher bekannten Darstellungsverfahren von Ketenimin-Metallverbindungen [2-4] angesehen werden. Er dürfte vor allem dann Bedeutung erlangen, wenn der Aufbau eines Ketenimins in der Ligandensphäre eines Metalls aus einem Carben und einem Isocyanid kinetisch gehemmt ist oder wenn die hierfür benötigten Carben- oder Isocyanid-Komplexe nicht zur Verfügung stehen. Unsere Untersuchungen haben ausserdem deutlich gemacht, dass Ketenimin-Komplexe durch Elektrophile, insbesondere durch Säuren, leicht angreifbar sind, was für ihre Verwendung in der organischen Synthese von Nutzen sein kann.

Experimenteller Teil

Alle Arbeiten wurden unter Schutzgas (Argon) und in sorgfältig getrockneten Lösungsmitteln durchgeführt. Die Darstellung der Ausgangsverbindungen 1 und 4-7 erfolgte nach Literaturangaben [6,7]. Schmelzpunktbestimmung durch DTA. Leitfähigkeitsmessungen in Nitromethan.

Darstellung der Verbindungen $C_5H_5Rh[\eta^2-N,C-TosN=C=CHR](P^iPr_3)$ (8, 10–12)

Eine Lösung von 0.60 mmol 1 bzw. 5-7 in 10 ml Pentan wird bei -78° C tropfenweise mit einer Lösung von 122 mg (0.62 mmol) Tosylazid in 3 ml Pentan versetzt und 5 min gerührt. Es entsteht ein orangefarbener Niederschlag, der nach Erwärmen auf Raumtemperatur abfiltriert und mehrmals mit kaltem Pentan $(-20^{\circ}$ C) gewaschen wird. Man erhält orangefarbene, kurzzeitig an Luft handhabbare Kristalle.

8: Ausbeute 320 mg (89%). Schmp. 106 °C (Zers.). (Gef.: C, 58.31; H, 6.21; N, 2.17; Rh, 16.94. $C_{29}H_{39}NO_2PRhS$ ber.: C, 58.10; H, 6.56; N, 2.34; Rh, 17.16%). MS (70 eV): m/z (%) 599 (1; M^+), 328 (24; $C_5H_5Rh(P^iPr_3)^+$). IR (KBr): ν (N=C=C) 1643, ν (SO)_{as} 1297, ν (SO)_{sym} 1147 cm⁻¹. ¹³C-NMR (C_6D_6 , 200 MHz): δ 153.70 (dd, J(RhC) = 22.1, J(PC) = 8.6 Hz, =C=); 142.10 (s), 140.11 (s), 139.69 (s), 129.44 (s), 128.27 (s), 127.52 (s), 125.71 (s), 124.88 (s) (C_6H_4 und C_6H_5); 100.39 (s, = CHR); 87.82 (d, J(RhC) = 4.0 Hz, C_5H_5); 25.33 (d, J(PC) = 21.6 Hz, PCH); 21.18 (s, $C_6H_4CH_3$); 19.72 (s) und 19.33 (s) (PCHCH_3). ³¹P-NMR (C_6D_6 , 90 MHz): δ 63.01 (d, J(RhP) = 168.2 Hz).

10: Ausbeute 290 mg (92%). Schmp. 94°C (Zers.). (Gef.: C, 52.52; H, 6.66; N, 2.98; Rh, 19.45. $C_{23}H_{35}NO_2PRhS$ ber.: C, 52.17; H, 6.74; N, 2.68; Rh, 19.66%). IR (KBr): $\nu(N=C=C)$ 1667, $\nu(SO)_{as}$ 1306, $\nu(SO)_{sym}$ 1147 cm⁻¹. ¹³C-NMR (C₆D₆, 200 MHz): δ 153.74 (dd, J(RhC) = 20.1, J(PC) = 8.1 Hz, =C=); 141.69 (s), 140.15 (s), 129.23 (s), 128.29 (s) (C₆H₄); 87.00 (dd, J(RhC) = 4.0, J(PC) = 2.2 Hz, C_5H_5); 83.44 (s, =CHR); 25.49 (d, J(PC) = 21.5 Hz, PCH); 21.13 (s, $C_6H_4CH_3$); 20.00 (s) und 19.67 (s) (PCHCH₃). ³¹P-NMR (C₆D₆, 90 MHz): δ 64.68 (d, J(RhP) = 171.0 Hz).

11: Ausbeute 296 mg (85%). Schmp. 127°C (Zers.). (Gef.: C, 56.37; H, 7.63; N, 2.50; Rh, 17.49. $C_{27}H_{43}NO_2PRhS$ ber.: C, 55.95; H, 7.48; N, 2.42; Rh, 17.76%). MS (70 eV): m/z (%) 579 (1; M^+), 328 (14; $C_5H_5Rh(P^iPr_3)^+$). IR (KBr): ν (N=C=C) 1660, ν (SO)_{as} 1303, ν (SO)_{sym} 1145 cm⁻¹. ³¹P-NMR (C₆D₆, 90 MHz): δ 63.80 (d, J(RhP) = 171.0 Hz).

12: Ausbeute 237 mg (72%). Schmp. 132°C (Zers.). (Gef.: C, 51.56; H, 6.63; N, 2.40; Rh, 17.98. C₂₅H₃₇NO₄PRhS ber.: C, 51.64; H, 6.41; N, 2.41; Rh, 17.70%). IR (KBr): ν (CO) 1689, ν (N=C=C) 1676, ν (SO)_{sym} 1150 cm⁻¹. ³¹P-NMR (C₆D₆, 90 MHz): δ 64.28 (d, J(RhP) = 167.0 Hz).

Darstellung von C, H, Rh $(\eta^2 - N, C - TosN = C = CHMe)(P'Pr_3)$ (9)

Eine Lösung von 221 mg (0.60 mmol) **4** in 10 ml Pentan wird bei -78° C tropfenweise mit einer Lösung von 122 mg (0.62 mmol) Tosylazid in 3 ml Pentan versetzt und 5 min gerührt. Nach dem Auftauen wird das Solvens im Vakuum entfernt, der rote ölige Rückstand in 20 ml Ether gelöst und die Lösung bei -78° C so lange tropfenweise mit einer 50%igen Lösung von HBF₄ in Ether versetzt, bis kein Niederschlag mehr ausfällt. Die Reinigung des Niederschlags erfolgt wie unten für **16–19** beschrieben. Durch Umsetzung mit NaOMe in MeOH und Umkristallisation des Rohprodukts aus Ether/Pentan bei -78° C (Zers.): (Gef.: C, 53.39; H, 6.70; N, 2.32; Rh, 18.94. C₂₄H₃₇NO₂PRhS ber.: C, 53.63; H, 6.94; N, 2.61; Rh, 19.14%). MS (70 eV): m/z (%) 537 (0.1; M^+), 328 (48; C₅H₅Rh(PⁱPr₃)⁺). IR (KBr): ν (N=C=C) 1684, ν (SO)_{as} 1297, ν (SO)_{sym} 1143 cm⁻¹. ³¹P-NMR (C₆D₆, 90 MHz): δ 64.15 (d, J(RhP) = 174.2 Hz).

Darstellung von $C_5H_5Rh/\eta^2 - N_5C - o - NO_2C_6H_4N = C = CHPh/(P'Pr_3)$ (13)

Ausgehend von 258 mg (0.60 mmol) **1** und 102 mg (0.62 mmol) *ortho*-Nitrophenylazid analog wie für **8** bzw. **10–12** beschrieben. Nach Umkristallisation des Rohprodukts aus Pentan bei – 78°C erhält man schwarze, mässig luftempfindliche Kristalle. Ausbeute 211 mg (62%). Schmp. 90°C (Zers.). (Gef.: C, 59.17; H, 6.57; N, 5.12; Rh, 17.97. $C_{28}H_{36}NO_2PRh$ ber.: C, 59.37; H, 6.41; N, 4.95; Rh, 18.17%). MS (70 eV): m/z (%) 566 (0.1; M^+), 328 (4; $C_5H_5Rh(P^iPr_3)^+$). ¹³C-NMR (C_6D_6 , 200 MHz): δ 151.20 (dd, J(RhC) = 19.9, J(PC) = 7.7 Hz, =C=); 149.22 (s), 148.17 (s), 140.70 (s), 131.61 (s), 128.78 (s), 128.29 (s), 125.62 (s), 124.90 (s), 121.14 (s), 119.32 (s) (C_6H_4 und C_6H_5); 98.02 (s, =CHPh); 87.41 (d, J(RhC) = 3.4 Hz, C_5H_5); 21.51 (d, J(PC) = 21.3 Hz, PCH); 19.99 (s) und 19.93 (s) (PCHCH₃). ³¹P-NMR (C_6D_6 , 90 MHz): δ 61.27 (d, J(RhP) = 175.7 Hz).

Darstellung der Verbindungen $C_5H_5Rh[\eta^2-C,C-RN=C=CHPh](P^iPr_3)$ (14,15)

Eine Lösung von 186 mg (0.31 mmol) **8** bzw. 125 mg (0.22 mmol) **13** in 5 ml Benzol wird 30 d bzw. 9 d bei Raumtemperatur gerührt. Nach Entfernen des Lösungsmittels im Vakuum wird der Rückstand aus THF/Pentan bzw. Pentan (jeweils bei -78 °C) umkristallisiert. Ausgehend von **8** wird ein orangeroter, kurzzeitig an Luft handhabbarer Feststoff erhalten. Bei der Isomerisierung von **13** resultieren schwarze Kristalle, die bei Raumtemperatur zu einem violetten Öl zerfließen. Beide Produkte werden NMR-spektroskopisch charakterisiert.

14: Ausbeute 166 mg (89%). Schmp. 89°C (Zers.). ¹H-NMR (C_6D_6 , 90 MHz): δ 7.33 (m, C_6H_4 und C_6H_5); 5.17 (dd, J(RhH) = 0.5, J(PH) = 1.2 Hz, C_5H_5); 2.92 (dd, J(RhH) = 2.7, J(PH) = 11.7 Hz, =CHPh); 1.98 (s, $C_6H_4CH_3$); 1.57 (m, PCH); 1.12 (dd) und 1.08 (dd) (J(PH) = 14.0, J(HH) = 7.0 Hz, PCHCH₃). ³¹P-NMR (C_6D_6 , 90 MHz): δ 64.25 (d, J(RhP) = 181.6 Hz).

15: Ausbeute 104 mg (83%). ¹H-NMR (C_6D_6 , 200 MHz): δ 7.29 (m, C_6H_4 und C_6H_5); 4.78 (dd, J(RhH) = J(PH) = 0.9 Hz, C_5H_5); 2.87 (dd, J(RhH) = 2.8, J(PH) = 9.3 Hz, =CHPh); 1.56 (m, PCH); 0.94 (dd) und 0.82 (dd) (J(PH) = 14.0, J(HH) = 7.2 Hz, PCHCH₃). ¹³C-NMR (C_6D_6 , 200 MHz): δ 202.79 (dd, J(RhC) = 25.9, J(PC) = 6.1 Hz, =C=); 146.18 (s), 145.90 (s), 145.43 (s), 131.36 (s), 128.78 (s), 128.46 (s), 124.30 (s), 124.14 (s), 124.00 (s), 123.65 (s) (C_6H_4 und C_6H_5); 89.74 (s, C_5H_5); 26.28 (d, J(PC) = 21.4 Hz, PCH); 19.93 (s) und 19.54 (s) (PCHCH₃); 3.93

(d, J(RhC) = 11.2 Hz, PC-Kopplung sehr klein, nicht genau aufgelöst, CHPh). ³¹P-NMR (C₆D₆, 90 MHz): δ 65.56 (d, J(RhP) = 187.6 Hz.

Darstellung der Verbindungen $[C_5H_5(P^iPr_3)RhC(CH_2R)N(Tos)]BF_4$ (16–19)

Zu einer Lösung von 0.60 mmol 8–11 in 20 ml Ether wird bei -78° C so lange eine frisch bereitete Lösung von HBF₄ in Ether getropft, bis kein Niederschlag mehr ausfällt. Danach wird die überstehende Lösung abdekantiert und der Niederschlag mehrmals aus Aceton/Ether umkristallisiert. Man erhält orangerote, wenig luftempfindliche Feststoffe.

16: Ausbeute 367 mg (89%). $\Lambda = 72.9 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$. (Gef.: C, 50.27; H, 6.04; N, 1.83; Rh, 15.26. C₂₉H₄₀BF₄NO₂PRhS ber.: C, 50.70; H, 5.90; N, 2.04; Rh, 15.00%). IR (KBr): ν (SO)_{as} 1297, ν (SO)_{sym} 1143 cm⁻¹.

17: Ausbeute 319 mg (80%). $\Lambda = 77.3 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$. (Gef.: C, 45.93; H, 6.28; N, 2.06; Rh, 16.67. C₂₄H₃₈BF₄NO₂PRhS ber.: C, 46.10; H, 6.12; N, 2.24; Rh, 16.46%). IR (KBr): ν (SO)_{as} 1296, ν (SO)_{sym} 1145 cm⁻¹.

18: Ausbeute 323 mg (88%). $\Lambda = 75.6 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$. (Gef.: C, 45.25; H, 5.99; N, 2.16; Rh, 16.95. C₂₃H₃₆BF₄NO₂PRhS ber.: C, 45.19; H, 5.94; N, 2.29; Rh, 16.83%). IR (KBr): ν (SO)_{as} 1296, ν (SO)_{sym} 1145 cm⁻¹.

19: Ausbeute 348 mg (87%). $\Lambda = 77.7 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$. (Gef.: C, 48.48; H, 6.74; N, 2.02; Rh, 15.21. C₂₇H₄₄BF₄NO₂PRhS ber.: C, 48.59; H, 6.64; N, 2.10; Rh, 15.42%). IR (KBr): ν (SO)_{as} 1204, ν (SO)_{sym} 1125 cm⁻¹.

Darstellung von $[C_5H_5(P^iPr_3)RhC(=CHCO_2Me)NH(Tos)]PF_6$ (20)

Eine Lösung von 350 mg (0.60 mmol) **12** in 20 ml Ether wird bei -78° C tropfenweise so lange mit einer frisch bereiteten Lösung von HBF₄ in Ether versetzt, bis kein Niederschlag mehr ausfällt. Die überstehende Lösung wird abdekantiert, der Rückstand in wenig Methanol gelöst und die Lösung mit einem Überschuß an NH₄PF₆ (ca. 200 mg) versetzt. Nach 15 min Rühren bei Raumtemperatur wird das Solvens im Vakuum entfernt und der Rückstand zweimal mit je 10 ml CH₂Cl₂ extrahiert. Die vereinigten Extrakte werden filtriert, das Filtrat im Vakuum zur Trockne gebracht und der verbleibende Rückstand aus Aceton/Ether umkristallisiert. Es resultieren gelbe Kristalle. Ausbeute 349 mg (79%). $\Lambda = 73.2 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$. (Gef.: C, 40.70; H, 5.33; N, 1.87; Rh, 14.34. C₂₅H₃₈F₆NO₄P₂RhS ber.: C, 41.28; H, 5.26; N, 1.93; Rh, 14.15%). IR (KBr): ν (NH) 3343, ν (SO)_{as} 1205, ν (SO)_{sym} 1145 cm⁻¹. ¹H-NMR (200 MHz, CD₃NO₂): δ 8.44 (s,br, NH); 7.93 (m) und 7.53 (m) (C₆H₄); 6.02 (dd, J(RhH) = J(PH) = 1.0 Hz, CHCO₂Me); 5.82 (d, J(PH) = 0.9 Hz, C₅H₅); 3.84 (s, CO₂Me); 2.49 (s, C₆H₄CH₃); 2.30 (m, PCH); 1.21 (dd, J(PH) = 14.7, J(HH) = 7.1 Hz, PCHCH₃).

Deprotonierung der Komplexe 16-19

(a) Eine Lösung von 0.1 mmol 16–19 in 5 ml Methanol wird mit einer Lösung von ca. 1 mmol NaOMe in 3 ml Methanol versetzt und 5 min bei Raumtemperatur gerührt. Das Solvens wird im Vakuum entfernt, der Rückstand zweimal mit 3 ml CH₂Cl₂ extrahiert, dann werden die vereinigten Extrakte zur Trockne gebracht. Der verbleibende Rückstand wird aus THF/Pentan (16, 18, 19) bzw. Ether/Pentan (17) umkristallisiert. Durch Spektrenvergleich werden die erhaltenen orangeroten Feststoffe als die Verbindungen 8–11 identifiziert. Ausbeute 80–90%.

(b) Eine Lösung von 0.1 mmol 16-19 in 10 ml CH₂Cl₂ wird über Al₂O₃ (neutral,

Aktiv.-Stufe V, Säulenhöhe ca. 10 cm) chromatographiert. Nach Abziehen des Lösungsmittels wird der Rückstand wie oben angegeben umkristallisiert und NMR-spektroskopisch als 8-11 identifiziert. Ausbeute 90-95%.

Darstellung der Verbindungen $C_{5}H_{5}Rh[C(CH_{2}R)=N(Tos)](P^{i}Pr_{3})I(21-23)$

Eine Lösung von 0.3 mmol 16–18 in 5 ml Aceton wird bei $-78\,^{\circ}$ C mit 50 mg (0.3 mmol) NaI versetzt und 10 min gerührt. Nach Erwärmen auf Raumtemperatur wird das Solvens im Vakuum entfernt, der Rückstand mit ca. 10 ml CH₂Cl₂ extrahiert und der Extrakt zur Trockne gebracht. Nach Umkristallisation des Rückstandes aus Ether/Pentan erhält man rotbraune, kurzzeitig an Luft handhabbare Kristalle. Die Verbindungen 22 und 23 sind zu ca. 10% mit dem Sulfinato-Komplex 28 verunreinigt, der weder durch fraktionierende Kristallisation noch durch Chromatographie vollständig abgetrennt werden kann.

21: Ausbeute 179 mg (82%). Schmp. 93°C (Zers.). (Gef.: C, 47.58; H, 5.47; N, 1.80; Rh, 13.93. $C_{29}H_{40}INO_2PRhS$ ber.: C, 47.88; H, 5.54; N, 1.93; Rh, 14.15%). IR (KBr): ν (C=N) 1512, ν (SO)_{as} 1301, ν (SO)_{sym} 1142 cm⁻¹. ³¹P-NMR (C_6D_6 , 90 MHz): δ 53.02 (d, J(RhP) = 149.0 Hz).

22: IR (KBr): ν (C=N) 1509, ν (SO)_{as} 1297, ν (SO)_{sym} 1144 cm⁻¹. ³¹P-NMR (C₆D₆, 90 MHz): δ 54.27 (d, J(RhP) = 147.0 Hz).

23: IR (KBr): ν (C=N) 1526, ν (SO)_{as} 1295, ν (SO)_{sym} 1145 cm⁻¹. ³¹P-NMR (C₆D₆, 90 MHz): δ 56.11 (d, J(RhP) = 152.0 Hz).

Darstellung von $\{C_5H_5Rh[C(CH_2Ph)=N(Tos)](CNMe)(P^{\dagger}Pr_3)\}BF_4$ (24)

Eine Lösung von 156 mg (0.23 mmol) **16** in 5 ml Aceton wird bei $-78 \,^{\circ}$ C mit 13µl (0.23 mmol) CNMe versetzt und 10 min gerührt. Nach dem Erwärmen wird das Solvens im Vakuum entfernt und der Rückstand aus Aceton/Ether umkristallisiert. Man erhält hellgelbe, kurzzeitig luftstabile Kristalle. Ausbeute 116 mg (70%). $\Lambda = 77.3 \, \text{cm}^2 \, \Omega^{-1} \, \text{mol}^{-1}$. (Gef.: C, 50.71; H, 5.78; N, 3.61; Rh, 13.98. C₃₁H₄₃BF₄N₂O₂PRhS ber.: C, 51.12; H, 5.95; N, 3.85; Rh, 14.13%). IR (KBr): ν (C=N) 2229, ν (C=N) 1536, ν (SO)_{as} 1299, ν (SO)_{sym} 1143 cm. ¹³C-NMR (CD₃NO₂, 90 MHz): δ 214.20 (dd, J(RhC) = 31.3, J(PC) = 7.8 Hz, RhC); 146.05 (s), 139.46 (s), 136.52 (s), 131.71 (s), 131.06 (s), 130.27 (s), 128.80 (s), 128.50 (s) (C₆H₄ und C₆H₅); 94.90 (d, J(RhC) = 3.9 Hz, C₅H₅); 60.24 (s, CH₂Ph); 31.95 (s, CNCH₃, Signal für CNMe-Kohlenstoffatom nicht genau lokalisierbar); 27.44 (d, J(PC) = 23.4 Hz, PCH); 21.76 (s, C₆H₄CH₃); 19.81 (s) und 19.68 (s) (PCHCH₃). ³¹P-NMR ((CD₃)₂CO, 90 MHz): δ 67.42 (d, J(RhP) = 128.9 Hz).

Darstellung von $C_5H_5Rh[C(CH_2Ph)=N(Tos)](P^iPr_3)Cl$ (25)

In eine Lösung von 120 mg (0.20 mmol) **8** in 5 ml THF wird bei -78° C ca. 30 sec Chlorwasserstoff eingeleitet. Die Lösung wird 10 min gerührt, das Solvens danach im Vakuum entfernt und der Rückstand aus Aceton/Ether umkristallisiert. Man erhält orangefarbene, kurzzeitig lufstabile Kristalle. Ausbeute 100 mg (78%). Schmp. 99°C (Zers.). (Gef.: C, 54.78; H, 6.39; N, 2.10; Rh, 16.40. C₂₉H₄₀-ClNO₂PRhS ber.: C, 54.76; H, 6.34; N, 2.20; Rh, 16.18%). IR (KBr): ν (C=N) 1521, ν (SO)_{as} 1298, ν (SO)_{sym} 1141 cm⁻¹. ¹³C-NMR (CDCl₃, 200 MHz): δ 228.51 (dd, J(RhC) = 32.7, J(PC) = 12.5 Hz, RhC); 142.88 (s), 140.28 (s), 139.49 (s), 136.86 (s), 131.31 (s), 128.28 (s), 126.58 (s), 125.49 (s) (C₆H₄ und C₆H₅); 90.44 (d, J(RhC) = 3.0 Hz, C₅H₅); 53.14 (s), CH₂Ph); 24.28 (d, J(PC) = 21.6 Hz, PCH); 21.42 (s,

 $C_6H_4CH_3$); 19.45 (s) und 19.19 (s) (PCHCH₃). ³¹P-NMR (CDCl₃, 90 MHz): δ 54.43 (d, J(RhP) = 144.4 Hz).

Darstellung von $C_5H_5Rh[C(CH_3)=N(Tos)](P^iPr_3)Cl(26)$

Eine Lösung von 61 mg (0.12 mmol) **10** in 5 ml Benzol wird bei Raumtemperatur mit 0.73 ml einer 0.16 M Lösung von HCl in Benzol versetzt und 10 min gerührt. Das Solvens wird im Vakuum enfernt und der Rückstand aus THF/Ether umkristallisiert. Laut ¹H-NMR-Spektrum (Tab. 5) enthält der orangefarbene Feststoff noch ca. 10% der Sulfinato-Verbindung **27**, die weder durch Umkristallisation noch durch Chromatographie vollständig abzutrennen sind. IR (KBr): ν (C=N) 1523, ν (SO)_{as} 1288, ν (SO)_{sym} 1147 cm⁻¹. ³¹P-NMR (C₆D₆, 90 MHz): δ 56.01 (d, J(RhP) = 148.0 Hz).

Deprotonierung der Verbindungen 21-23, 25 und 26

Eine Lösung von 0.2 mmol 21–23, 25 bzw. 26 in ca. 10 ml CH_2Cl_2 wird über Al_2O_3 (neutral, Aktiv.-Stufe V, Säulenhöhe ca. 5 cm) chromatographiert. Nach Abziehen des Solvens werden die erhaltenen orangefarbenen Feststoffe durch Spektrenvergleich als die Komplexe 8–10 identifiziert. Ausbeute 90–95%.

Darstellung der Verbindungen $C_5H_5Rh(SO_2C_6H_4-p-CH_3)(P^iPr_3)X$ (27, 28)

Eine Lösung von 0.6 mmol 21-23 bzw. 26 in 5 ml CHCl₃ wird jeweils 30 min auf 60°C erwärmt. Nach dem Abkühlen wird das Solvens im Vakuum entfernt und der Rückstand aus THF/Ether umkristallisiert. Man erhält orangefarbene (27) bzw. rotbraune Kristalle (28).

27: Ausbeute 265 mg (85%). Schmp. 160 °C (Zers.). (Gef.: C, 48.93; H, 6.57; Rh, 20.07. $C_{21}H_{33}ClO_2PRhS$ ber.: C, 48.61; H, 6.41; Rh, 19.83%). IR (KBr): ν (SO)_{as} 1204, ν (SO)_{sym} 1088 cm⁻¹. ¹H-NMR (CDCl₃, 200 MHz): δ 7.92 (m) und 7.24 (m) (C₆H₄); 5.34 (dd, J(PH) = 1.8, J(RhH) = 0.5 Hz, C₅H₅); 2.41 (s, C₆H₄CH₃); 1.46 (dd) und 1.42 (dd) (J(PH) = 14.5, J(HH) = 7.2 Hz, PCHCH₃); Signal der PCH-Protonen nicht genau zu lokalisieren. ¹³C-NMR (CDCl₃, 200 MHz): δ 155.96 (s), 140.25 (s), 128.24 (s), 125.42 (s) (C₆H₄); 92.53 (d, J(RhC) = 4.2 Hz, C₅H₅); 26.62 (d, J(PC) = 21.5 Hz, PCH); 21.25 (s, C₆H₄CH₃); 20.49 (s) und 20.02 (s) (PCHCH₃). ³¹P-NMR (CDCl₃, 90 MHz): δ 54.21 (d, J(RhP) = 137.0 Hz).

28: Ausbeute 304 mg (83%). Schmp. 135°C (Zers.). (Gef.: C, 40.83; H, 5.42; Rh, 16.54. $C_{21}H_{33}IO_2PRhS$ ber.: C, 41.33; H, 5.45; Rh, 16.86%). IR (KBr): ν (SO)_{as} 1206, ν (SO)_{sym} 1086 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 8.26 (m) und 6.93 (m) (C₆H₄); 5.00 (dd, J(PH) = 1.7, J(RhH) = 0.5 Hz, C_5H_5); 2.03 (s, $C_6H_4CH_3$); 1.35 (dd) und 1.31 (dd) (J(PH) = 14.8, J(HH) = 7.2 Hz, PCHCH₃); Signal der PCH-Protonen nicht genau zu lokalisieren. ¹³C-NMR (CDCl₃, 200 MHz): δ 156.94 (s), 142.90 (s), 128.16 (s), 125.34 (s) (C₆H₄); 92.16 (s, C_5H_5); 27.57 (d, J(PC) = 21.8 Hz, PCH); 23.48 (s, $C_6H_4CH_3$); 21.19 (s) und 19.91(s) (PCHCH₃). ³¹P-NMR (C₆D₆, 90 MHz): δ 53.40 (d, J(RhP) = 137.7 Hz).

Kristallstrukturanalyse von 8

Einkristalle aus Aceton/Pentan (-78°C); empirische Formel C₂₉H₃₉NO₂PRhS; Kristallgrösse $0.30 \times 0.40 \times 0.10$ mm, Kristallfarbe rot. Monokline Elementarzelle, Raumgruppe P2₁/n, Z = 4; a 1673(1), b 981.3(7), c 1817(1) pm, β 103.7(5)°, V 2897.8 × 10⁶ pm³; d(ber) 1.37 g/cm³; Strahlung Mo-K_a, λ = 71.069 pm;

Atomicoordin			
	x	у	Z
Rh	0.03566(3)	0.17505(5)	0.22772(2)
Р	-0.03620(9)	-0.02668(15)	0.20274(8)
S	-0.06967(8)	0.38360(14)	0.30413(7)
O(1)	-0.00062(24)	0.47538(38)	0.31744(21)
O(2)	-0.13708(26)	0.41292(42)	0.23991(21)
N	-0.04365(24)	0.22358(43)	0.29606(22)
C(1)	0.09552(65)	0.18003(93)	0.13230(47)
C(2)	0.04801(54)	0.30114(117)	0.12620(52)
C(3)	0.08452(81)	0.37255(87)	0.19599(70)
C(4)	0.15151(62)	0.29498(135)	0.23308(50)
C(5)	0.15875(54)	0.18607(107)	0.19877(53)
C(6)	0.03114(30)	0.17684(49)	0.33671(26)
C(7)	0.06835(34)	0.16526(54)	0.40966(28)
C(8)	0.15128(35)	0.11628(56)	0.44217(31)
C(9)	0.20242(39)	0.06477(69)	0.39881(36)
C(10)	0.28359(43)	0.02429(84)	0.43042(50)
C(11)	0.31296(46)	0.03271(84)	0.50760(56)
C(12)	0.26383(65)	0.07960(76)	0.55180(47)
C(13)	0.18134(48)	0.12054(73)	0.51973(36)
C(14)	-0.10765(31)	0.38008(54)	0.38837(28)
C(15)	- 0.09189(33)	0.48969(56)	0.43734(29)
C(16)	-0.12110(37)	0.48879(64)	0.50152(31)
C(17)	-0.16475(35)	0.38175(68)	0.51924(31)
C(18)	-0.18005(39)	0.27289(68)	0.46907(38)
C(19)	-0.15436(39)	0.27094(64)	0.40396(35)
C(20)	- 0.19542(47)	0.38534(88)	0.59155(39)
C(21)	-0.13566(38)	-0.00105(65)	0.13301(34)
C(22)	0.01549(47)	-0.15476(70)	0.15571(41)
C(23)	- 0.06587(38)	-0.10471(62)	0.28528(33)
C(24)	-0.12334(48)	0.05276(89)	0.05736(39)
C(25)	- 0.19439(39)	0.09102(72)	0.16525(40)
C(26)	0.10519(54)	- 0.18946(85)	0.19886(50)
C(27)	-0.03394(59)	-0.27696(88)	0.12289(54)
C(28)	0.00860(42)	-0.16521(63)	0.34317(38)
C(29)	-0.13926(46)	-0.20573(70)	0.26852(42)

Tabelle 6 Atomkoordinaten von 8 mit Standardabweichungen

Graphitmonochromator; Messbereich $5 \le 2\theta \le 50^{\circ}$; gemessene Reflexe 5095, Strukturfaktoren 4501 $[F_{o} > 3.92\sigma(F_{o})]$, verfeinerte Parameter 316, Reflex/ Parameter-Verhältnis 14.2; R 0.052, R_{w} 0.066; GOF 5.67. Die Atomkoordinaten mit Standardabweichungen sind in Tab. 6 angegeben. Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54846, der Autorennamen und des Zeitschriftenzitats angefordert werden.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die gewährte Unterstützung, dem Fonds insbesondere für ein Doktorandenstipendium (für U.B.). Die Firma Degussa AG unterstützte die Arbeiten auf großzügige Weise durch Chemikalienspenden. Für die Aufnahme der Massenspektren sind wir Frau Dr. G. Lange und Herrn F. Dadrich, für die Durchführung von Elementaranalysen und DTA-Messungen Frau U. Neumann, Frau R. Schedl und Herrn C.P. Kneis, und für wertvolle experimentelle Mitarbeit Herrn Dipl. Chem. O. Nürnberg sehr zu Dank verbunden.

Literatur

- 1 H. Werner, A. Höhn und M. Schulz, J. Chem. Soc., Dalton Trans., im Druck.
- 2 R. Aumann, Angew. Chem., 100 (1988) 1512; Angew. Chem., Int. Ed. Engl., 27 (1988) 1456.
- 3 Neuere Arbeiten: (a) R. Aumann und H. Heinen, Chem. Ber., 121 (1988) 1739; (b) R. Aumann und H. Heinen, Chem. Ber., 122 (1989) 1139.
- 4 (a) B. Strecker und H. Werner, Angew. Chem., 102 (1990) 310; Angew. Chem., Int. Ed. Engl., 29 (1990) 275; (b) B. Strecker, G. Hörlin, M. Schulz und H. Werner, Chem. Ber., im Druck.
- 5 (a) H. Werner, A. Höhn und R. Weinand, J. Organomet. Chem., 299 (1986) C15; (b) A. Höhn und H. Werner, Chem. Ber., 121 (1988) 881.
- 6 H. Werner, J. Wolf, F.J. Garcia Alonso, M.L. Ziegler und O. Serhadli, J. Organomet. Chem., 336 (1987) 397.
- 7 H. Werner und U. Brekau, Z. Naturforsch. B, 44 (1989) 1438.
- 8 M.W. Barker und W.E. McHenry in S. Patai (Hrsg.), The Chemistry of Ketenes, Allenes and Related Compounds, Vol. 2, Wiley, New York, 1980, S. 701.
- 9 W. Beck, W. Rieber, S. Cenini, F. Porta und G. La Monica, J. Chem. Soc., Dalton Trans., (1974) 298.
- 10 T. Sielisch und U. Behrens, J. Organomet. Chem., 310 (1986) 179.
- 11 D.J. Yarrow, J.A. Ibers, Y. Tatsuno und S. Otsuka, J. Am. Chem. Soc., 95 (1973) 8590.
- 12 J. Wolf, R. Zolk, U. Schubert und H. Werner, J. Organomet. Chem., 340 (1988) 161.
- 13 R.E. Cramer, K. Panchanatheswaran und J.W. Gilje, Angew. Chem., 96 (1984) 888; Angew. Chem., Int. Ed. Engl., 23 (1984) 912.
- (a) B.L. Shaw und A.J. Stringer, Inorg. Chim. Acta Rev., 7 (1973) 1; (b) T. Kashiwagi, N. Yasuoka, N. Kasai und M. Kukudo, J. Chem. Soc., Chem. Commun., (1969) 317; (c) P. Racanelli, G. Pantini, A. Immirzi, G. Allegra und L. Porri, J. Chem. Soc., Chem. Commun., (1969) 361; (d) M. Kadonaga, N. Yasuoka und N. Kasai, J. Chem. Soc., Chem. Commun., (1971) 1597.
- 15 W. Runge in S. Patai (Hrsg.), The Chemistry of Ketenes, Allenes and Related Compounds, Vol. 1, Wiley, New York, 1980, S. 45.
- 16 (a) J.G. Verkade und R.W. King, Inorg. Chem., 1 (1962) 948; (b) M. Tsuboi, F. Kuriyagawa, K. Matsuo und Y. Kyozoku, Bull. Chem. Soc. Jpn., 40 (1967) 1813; (c) C. Benezra, J. Am. Chem. Soc., 95 (1973) 6890.
- 17 (a) H. Werner, R. Feser, W. Paul und L. Hofmann, J. Organomet. Chem., 219 (1981) C29; (b) H. Werner, W. Paul, R. Feser, R. Zolk und P. Thometzek, Chem. Ber., 118 (1985) 261.
- 18 J. Wolf und H. Werner, J. Organomet. Chem., 336 (1987) 413.
- 19 H. Werner, W. Paul, W. Knaup, J. Wolf, G. Müller und J. Riede, J. Organomet. Chem., 358 (1988) 95.
- 20 R. Ben-Shoshan und R. Pettit, J. Am. Chem. Soc., 89 (1967) 2231.
- 21 (a) K. Vrieze, H.C. Volger, M. Gronert und A.P. Praat, J. Organomet. Chem., 16 (1969) P19; (b) K. Vrieze, H.C. Volger und A.P. Praat, J. Organomet. Chem., 21 (1970) 467.
- 22 B. Heiser, A. Kühn und H. Werner, Chem. Ber., 118 (1985) 1531.
- 23 (a) C.G. Kreiter und V. Formacek, Angew. Chem., 84 (1972) 155; Angew. Chem., Int. Ed. Engl., 11 (1972) 141; (b) E.O. Fischer, H. Hollfelder, P. Friedrich, F.R. Kreissl und G. Huttner, Chem. Ber., 110 (1977) 3467; (c) F.R. Kreissl in K.H. Dötz, H. Fischer, P. Hofmann, F.R. Kreissl, U. Schubert und K. Weiss (Hrsg.), Transition Metal Carbene Complexes, Verlag Chemie, Weinheim, 1983, S. 69.
- 24 H. Werner, S. Lotz und B. Heiser, J. Organomet. Chem., 209 (1981) 197.
- 25 Y. Yamamoto und H. Yamazaki, J. Organomet. Chem., 24 (1970) 717.
- 26 D.F. Christian, H.C. Clark und R.F. Stepaniak, J. Organomet. Chem., 112 (1976) 209.
- 27 P.M. Treichel und J.P. Stenson, Inorg. Chem., 8 (1969) 2563.
- 28 W.D. Jones und F.J. Feher, Organometallics, 2 (1983) 686.
- 29 H. Werner, B. Heiser, U. Schubert und K. Ackermann, Chem. Ber., 118 (1985) 1517.
- 30 J.P. Collman und W.R. Roper, J. Am. Chem. Soc., 88 (1966) 180.
- 31 D.J. Weinmann und H.B. Abrahamson, Inorg. Chem., 26 (1987) 3034.